ЭЛЕТРИЧЕСКАЯ, ТЕПЛОВАЯ И ЭФФЕКТИВНАЯ ТЕПЛОВАЯ МОЩНОСТЬ ПРОЦЕССА ЭЛЕКТРИЧЕСКОЙ СВАРКИ ПЛАВЛЕНИЕМ

Сколько нужно тепла для отопления?

сколько тепла нужно в дом

Для точного расчета необходимого количества тепла для помещения следует учитывать множество факторов: климатические особенности местности, кубатуру здания, возможные теплопотери жилья (количество окон и дверей, строительный материал, наличие утеплителя и др.). Данная система вычислений достаточно трудоемкая и применяется в редких случаях.

В основном, расчет тепла определяется на основании установленных ориентировочных коэффициентов: для помещения с потолками не выше 3 метров, на 10 м2 требуется 1 Квт тепловой энергии. Для северных регионов показатель увеличивается до 1,3 Квт.

К примеру, помещение, площадью 80 м2, для оптимального обогрева требует 8 КВт мощности. Для северных районов количество тепловой энергии возрастет до 10,4 КВт

Расчет тепловой нагрузки

Чтобы определить тепловую нагрузку есть несколько методов расчета. Каждый из них имеет свои сложности и нюансы, поэтому лучше воспользоваться ниже перечисленными способами для более точного результата. Рассмотрим три простых способа расчета тепловой нагрузки:

  • Метод 1. Есть простой метол расчета, который основан на СНиП. 1 кВт тепловой мощности требуется для обогрева 10 кв.м. помещения. Полученный результат нужно умножить на региональный коэффициент. Рассмотрим некоторые коэффициенты в зависимости от региона: для умеренного климата коэффициент равен от 1,2 до 1,3; для южного региона коэффициент составляет 0,7-0,9; для крайнего северного региона принимает коэффициент от 1,5 до 2;
  • Метод 2. Хоть первый метод довольно-таки простой, но он имеет много погрешностей, поэтому опираться только на его результаты не следует. В первую очередь нужно обратить внимание на высотку потолков, которая в каждом помещении разная. Количество дверей и окон в здании также играет немаловажную роль. В квартире будут тепловые потери намного меньше, чем в частном доме. Именно все эти факторы влияют на тепловую нагрузку.
  • Выделим некоторую корректировку метода: на 1 кубический метр объема помещения применяется тепловая нагрузка 40 ватт; окно в помещении добавляет к показателю 100 ватт, а дверь 200 ватт; если квартира расположена в углу или торце дома, то она имеет коэффициент от 1,2 до 1,3, а в частном доме применяется коэффициент 1,5;
  • Метод 3. Но второй метод, как и первый не является точным. Именно поэтому стоит воспользоваться еще и третьим методом расчета. В данном методе учтены сопротивление стен и потолка, а также разность температур между воздухом в помещении и на улице. Для того чтобы в помещении был постоянный температурный режим необходимо количество тепловой энергии, которое будет совпадать с потерями через ограждающие конструкции и систему вентиляции. Но в этом методе все расчеты упрощены. Через вентиляционную систему теряется примерно от 30 до 40% тепла, через крышу уходит от 10 до 25%, через стены теряется от 20 до 30% тепла, а через пол, который расположен на грунте уходит от 3 до 6 %.

Рассмотрим некоторые значения термического сопротивления:

  1. Кирпичные стены, которые выложены в 3 кирпича имеют сопротивление 0,592м2*с/Вт, в 2,5 кирпича — 0,502, в 2 кирпича – 0,405, в 1 кирпич – 0,187.
  2. Стены из газосиликатных блоков имеют сопротивление 0,476 для стены в 20 см, для стены в 30 см – 0,709.
  3. Для стены из бревна термическое сопротивление составляет 0,550 для диаметра 25 см, для 20 см – 0,440.
  4. Если толщина бревенчатого сруба равна 20 см, то сопротивление будет 0,440, а если 10 см – 0,353.
  5. Для деревянного пола сопротивление составляет 1,85, для двойной деревянной двери – 0,21.
  6. Для штукатурки толщиной 3 см сопротивление равняется 0,035.
  7. Для перекрытия термическое сопротивление равно 1,43.
  8. Для каркасной стены толщиной 20 см с утеплением в виде минеральной ваты термическое сопротивление равно 0,703.

Стоит обратить внимание на следующие факторы: твердотопливные котлы не должны работать на мощности, которая меньше номинальной. Рассчитывать тепловую нагрузку на отопление обязательно.

Если выполнить все требования и правила перед устройством отопительной системы, то она будет работать без перебоев, а еще можно сэкономить на лишних затратах.

Теплоотдача – ключевой показатель эффективности

Коэффициент теплоотдачи радиаторов – это показатель его мощности. Он определяет количество выделенного тепла за определенный промежуток времени. На мощность конвектора влияют: физические свойства прибора, его тип подключения, температура и скорость теплоносителя.

Мощность конвектора, указанная в его техпаспорте, обусловлена физическими свойствами материала, из которого изготовлен прибор, и зависит от его межосевого расстояния. Чтобы рассчитать необходимое количество секций радиатора для помещения, понадобится площадь жилья и коэффициент теплового потока прибора.

примерная таблица расчета

Вычисления производятся по формуле:

Количество секций = S/ 10 * коэффициент энергии (K) / величина теплового потока (Q)

Пример: Необходимо рассчитать количество секций алюминиевой батареи (Q = 0,18) для помещения, площадью 50 м2.

Расчет: 50 / 10 * 1 / 0,18 = 27,7. То есть, для обогрева помещения понадобится 28 секций. Для монолитных приборов, за место Q, ставим коэффициент теплоотдачи радиатора и в результате получаем необходимое количество батарей.

Если конвекторы будут установлены рядом с источниками, влияющими на теплопотери (окна, двери), то коэффициент энергии берется из расчета — 1.3.

Для отопления используются радиаторы: стальные, алюминиевые, медные, чугунные, биметаллические (сталь + алюминий), и все они имеют разную величину теплового потока, обусловленную свойствами металла.

количество секций в таблице

Схемы подключения радиаторов для частного дома, как выбрать лучший вариант, читайте здесь.

Как выбрать хороший масляный радиатор для дома: советы, рекомендации, польза и вред.

У каких радиаторов отопления самая высокая теплоотдача

Что касается характеристик металлов, то наименьшей теплоотдачей обладает сталь, а наибольшей – биметалл (сочетание алюминия и стали).

МатериалТеплоотдача (Вт/м*К)
Сталь47
Чугун52
Алюминий202-236
Биметалл380

Однако это лишь свойства металлов, представляющие общую картину. Теплоотдача, в меньшей степени, но зависит и от межосевого расстояния, площади секции, технологии изготовления. Поэтому мы рекомендуем рассмотреть эффективность каждого вида радиатора в целом, а затем сравнить конкретные наиболее удачные модели, выбрав самые эффективные из них.

Биметаллические

Теплоотдача биметаллических радиаторов отопления

Приборы рассчитаны на рабочее давление системы до 35 атм. Даже самые простые модели имеют срок службы не менее 20 лет. Стоимость за секцию 395-2190 руб.

Алюминиевые

Теплоотдача алюминиевых радиаторов отопления

В зависимости от модели тепловая мощность может быть в пределах от 130 Вт до 220,9 Вт на 1 секцию (модель Roca Dubal-80). При высокой эффективности, они, в сравнении с биметаллическими, имеют много эксплуатационных нюансов. При выборе необходимо обращать внимание на рабочее давление, иногда оно не превышает даже 10 атм.

Главным недостатком является необходимость поддержания определенной кислотности теплоносителя (воды), что сложно даже в частном доме, не говоря уже о квартире с центральным отоплением. В противном случае, уровень pH более 7,5 быстро разрушит приборы. Стоимость 1 элемента – от 350 до 1200 руб.

Стальные

Теплоотдача стальных радиаторов отопления

Удельная тепловая мощность тока формула

Работа и мощность тока. Закон Джоуля – Ленца
Рассмотрим произвольный участок цепи, к концам которого приложено напряжение U
. За время d
t
через каждое сечение проводника проходит заряд

При этом силы электрического поля, действующего на данном участке, совершают работу:

Разделив работу на время, получим выражение для мощности:

(7.7.1)

Полезно вспомнить и другие формулы для мощности и работы:

(7.7.2)
(7.7.3)

В 1841 г. манчестерский пивовар Джеймс Джоуль и в 1843 г. петербургский академик Эмилий Ленц установили закон теплового действия электрического тока.

Джоуль Джеймс Пресскотт
(1818 – 1889) – английский физик, один из первооткрывателей закона сохранения энергии. Первые уроки по физике ему давал Дж. Дальтон, под влиянием которого Джоуль начал свои эксперименты. Работы посвящены электромагнетизму, кинетической теории газов.
Ленц Эмилий Христианович
(1804 – 1865) – русский физик. Основные работы в области электромагнетизма. В 1833 г. установил правило определения электродвижущей силы индукции (закон Ленца), а в 1842 г. (независимо от Дж. Джоуля) – закон теплового действия электрического тока (закон Джоуля-Ленца). Открыл обратимость электрических машин. Изучал зависимость сопротивление металлов от температуры. Работы относятся также к геофизике.

Независимо друг от друга Джоуль и Ленц показали, что при протекании тока, в проводнике выделяется количество теплоты

:

(7.7.4)

Если ток изменяется со временем, то

.

Это закон Джоуля–Ленца в интегральной форме

.

Отсюда видно, что нагревание происходит за счет работы, совершаемой силами поля над зарядом.

Соотношение (7.7.4) имеет интегральный характер и относится ко всему проводнику с сопротивлением R

, по которому течет ток
I
. Получим закон Джоуля-Ленца в локальной-дифференциальной форме, характеризуя тепловыделение в произвольной точке.

Тепловая мощность тока

в элементе проводника Δ
l
, сечением Δ
S
, объемом равна:

Порядок расчета теплоотдачи

Итак, реальная мощность батареи отопления гораздо меньше заявленной, но для ее подбора надо понимать, насколько. Для этого есть простой способ: применение понижающего коэффициента к паспортному значению тепловой мощности обогревателя. Ниже представлена таблица коэффициентов, на которые умножается заявленная теплоотдача радиатора в зависимости от настоящей величины DT:

Коэффициенты пересчета мощности радиаторных секций

Алгоритм расчета настоящей теплоотдачи отопительных приборов для ваших индивидуальных условий такой:

  1. Определить, какая должна быть температура в доме и воды в системе.
  2. Подставить эти значения в формулу и рассчитать свой температурный напор Δt.
  3. Найти в таблице коэффициент, соответствующий найденному DT.
  4. Умножить на него паспортную величину теплоотдачи батареи.
  5. Подсчитать число секций либо целых отопительных приборов для обогрева комнаты.

В приведенном примере тепловая мощность 1 секции биметаллического радиатора составит 200 Вт х 0.48 = 96 Вт. На обогрев помещения площадью 10 м² пойдет приблизительно 1000 Вт теплоты или 1000/96 = 10.4 ≈ 11 секций (округление делаем в большую сторону).

Представленная таблица и расчет теплоотдачи батарей надо использовать, когда в документации указана Δt, равная 70 °С. Но бывает, что фирмы–производители дают мощность радиатора для других условий, например, при Δt = 50 °С. Тогда пользоваться коэффициентами нельзя, проще набрать требуемое количество секций по паспортной характеристике, только взять их число с полуторным запасом.

Справка. Многие производители указывают значения теплоотдачи при таких условиях эксплуатации: tподачи = 90 °С, tобратки = 70 °С, tвоздуха = 20 °С, что как раз соответствует Δt = 50 °С.

Как самостоятельно рассчитать необходимую мощность приборов отопления

Профессиональный расчет

Для определения этой величины существуют теплотехнические расчеты. Профессиональный теплотехнический расчет отопительных систем является весьма сложным занятием, которое могут выполнить только подготовленные специалисты.

Однако существуют и упрощенные способы расчета, при помощи которых можно приблизительно определить необходимую для того или иного помещения мощность отопительных агрегатов. Основаны они на средних тепловых характеристиках жилых зданий, полученные благодаря многолетнему наблюдению за использованием отопительных систем (узнайте также о том, при какой температуре власти отключают отопление).

Формулы и значения

Итак, вот инструкция о том, как своими руками определить необходимую мощность отопительного прибора:

  • Для средней полосы с минимальной температурой в зимний сезон -30°C эта величина определяется по следующей формуле:

Q = qv × V, где

Q (кВт) – необходимая тепловая мощность; qv – средняя мощность отопления 1м³; V (м³) – объем помещения.

В таком случае, рекомендуется использовать следующие значения qv: для обычной квартиры в панельном доме qv = 0,04 кВт/м³; для холодной квартиры (плохо утепленной, угловой) qv = 0,05 кВТ/м³; для отлично утепленной квартиры (утепленные стены, наличие пластиковых окон) qv = 0,03 кВт/м³.

Обратите внимание! По выше указанной формуле невозможно вычисление тепловой мощности для других климатических зон.

Полезная таблица по выбору мощности котла

  • А вот формула для нахождения необходимой интенсивности отопления для любой другой климатической зоны: Q = 0,001 × (qvt × V × (tп – toc)), где

Q (кВт) – необходимая тепловая мощность; qvt (вт/м³ × °С) – средняя удельная теп. мощность; tп – температура в помещении; toc – температура на улице; V (м³) – объем помещения.

В таком случае, рекомендуется использовать следующие значения qvt: для обычной квартиры в панельном доме qvt = 0,8Вт/м³ × °С; для холодной квартиры qvt = 1Вт/м³ × °С; для отлично утепленной квартиры qvt = 0,6вт/м3 ×˚С.

При расчете, как правило берут toc = минимальной температуре региона в зимний сезон, а tп = желаемой температуре в квартире.

Совет! Вас вполне устраивала та температура, которая была в квартире при централизованном отоплении? Тогда данную тепловую величину вы можете узнать, сосчитав количество секций всех батарей, установленных в помещение и умножив их на мощность одной секции. К примеру, мощность одной секции батареи выполненной из чугуна и высотой 60 см = 150Вт.

А вот по этой формуле вы сможете рассчитать, сколько радиаторных секций понадобится для создания комфортной температуры в каждой комнате дома

Не забудьте, что после определения необходимой тепловой мощности в целом для квартиры, нужно распределить ее между всеми комнатами пропорционально их площади.

Расчет для батарей

Сравнение по тепловой мощности

Если вы внимательно изучили предыдущий раздел, то должны понимать, что на теплоотдачу очень влияют температуры воздуха и теплоносителя, а эти параметры мало зависят от самого радиатора. Но есть и третий фактор — площадь поверхности теплообмена, здесь конструкция и форма изделия играет большую роль. Четко сравнить стальной панельный обогреватель с чугунной батареей не выйдет, их поверхности слишком разные.

Отопительные приборы из чугуна

Четвертый фактор, влияющий на теплоотдачу, — это материал, из коего изготовлен отопительный прибор. Сравните сами: 5 секций алюминиевого радиатора GLOBAL VOX высотой 600 мм отдадут 635 Вт при DT = 50 °С. Чугунная ретро батарея DIANA (GURATEC) на 5 секций такой же высоты передаст в комнату только 530 Вт при аналогичных условиях (Δt = 50 °С). Эти данные опубликованы на официальных сайтах производителей.

Примечание. Мощностные характеристики алюминиевых и биметаллических обогревателей мало отличаются, сравнивать их нет смысла.

Можно попытаться провести сравнение алюминия со стальным панельным радиатором, взяв ближайший типоразмер, подходящий по габаритам. Длина батареи из 5 алюминиевых секций GLOBAL высотой 600 мм составит примерно 400 мм, что соответствует стальной панели KERMI 600 х 400.

Характеристики 1 радиаторной секции из алюминия

Если даже взять трехрядную стальную панель (тип 30), получим 572 Вт при Δt = 50 °С против 635 Вт у 5-секционного алюминия. Еще учтите, что радиатор GLOBAL VOX гораздо тоньше, глубина прибора составляет 95 мм, а панели KERMI – почти 160 мм. То есть, высокая теплоотдача алюминиевых секций позволяет уменьшить габариты обогревателя.

В индивидуальной системе отопления частного дома батареи одинаковой мощности, сделанные из различных металлов, работать будут по-разному. Поэтому и сравнение довольно предсказуемо:

  1. Биметаллические и алюминиевые изделия быстро прогреваются и остывают. Отдавая больше теплоты за промежуток времени, они сильнее охлаждают воду, возвращаемую в систему.
  2. Стальные панельные радиаторы занимают среднюю позицию, так как передают тепло не настолько интенсивно. Зато они дешевле и проще в монтаже.
  3. Самые инертные и дорогие – это обогреватели из чугуна, им присущ долгий разогрев и остывание, из-за чего возникает небольшое запаздывание при автоматическом регулировании расхода теплоносителя термостатическими головками.

Типы и тепловая эффективность источников нагрева в процессе сварки.

По времени действия различают источники мгновенные, выделяющие теплоту за очень малый промежуток времени, и непрерывно действующие. Последние по расчетной схеме могут быть неподвижными, подвижными и быстро движущимися. Как правило, в случае ручной сварки и наплавки целесообразно использовать схему подвижного источника, а в случае автоматической — быстродвижущегося.

В зависимости от размера зоны, в которой выделяется теплота, различают источники сосредоточенные и распределенные. Сосредоточенные источники могут быть точечными (теплота выделяется в очень малом объеме), линейными (теплота выделяется по линии) и плоскими (теплота выделяется в плоскости).

В случае сварки углового шва на массивной детали или наплавки на нее для тепловых расчетов применяется схема точечного источника на поверхности полубесконечного тела или плоского слоя. Если пластина сваривается стыковым или угловым швом с полным или почти полным проплавлением, применяют схему линейного источника в пластине (теплота вводится равномерно по всей толщине вдоль условной линии). Для стыковой сварки стержней используют схему плоского источника (теплота выделяется в плоскости стыка).

Распределенные источники выделяют теплоту по какой-то поверхности (в пятне нагрева). или в некотором объеме детали, причем интенсивность ввода теплоты (удельный тепловой поток) в разных точках пятна нагрева неодинакова. В зависимости от закона распределения удельного теплового потока по пятну нагрева распределенные источники могут быть различными. Для лазерной, дуговой, плазменной или газовой сварки этот закон близок к закону нормального распределения, и источники теплоты называются нормальными. Если пятно нагрева имеет форму круга, то источник будет нормально круговым (лазерная, дуговая, плазменная и газовая сварка); если же пятно нагрева имеет форму полосы, источник нормально полосовой (нагрев листа газовыми гребенками).

Эффективная тепловая мощность сварочного источника теплоты, т. е. количество теплоты, вводимой при сварке источником в деталь в единицу времени, если известны параметры режима сварки, определяется по формуле

где I — сварочный ток; U — напряжение на дуге; η — эффективный к. п. д. процесса нагрева.
Таблица 1. Значения эффективного к. п. д. процесса нагрева для разных способов сварки.

Способ сваркиη
Ручная, электродами:
плавящимися0,7-0,85
угольными0,5-0,7
Под флюсом0,8-0,95
В защитном газе:
Углекислом0,7-0,8
Аргоне, электродом:
вольфрамовым0,65-0,75
плавящимся0,7—0,8
Порошковой проволокой0,8-0,9
Газовым пламенем0,3-0,8
Электрошлаковая:
обычная при толщине листов, мм:
500,55
1000,8
2000,9
С порошкообразным при садочным металлом при толщине листов, мм:
500,75-0,8
1000,9

Погонная энергия сварки, т. е. количество теплоты, вводимой на единицу длины шва, в этом случае находится из выражения

где v — скорость сварки.

Если режим сварки не известен, но задано поперечное сечение наплавляемого за проход металла шва (стыкового или углового), погонную энергию можно получить из уравнения

где Fш— площадь поперечного сечения наплавленного металла шва, мм2; Qv — коэффициент, определяемый по (табл. 2).

При сварке угловых соединений (тавровых, нахлесточных) часть погонной энергии, вводимая в свариваемый элемент, определяется в зависимости от соотношения толщин. Так, в случае приварки угловым швом к пластине толщиной δ конструктивного элемента толщиной δк погонная энергия, вводимая в пластину qп.п и в конструктивный элемент (ребро, стенку, накладку) qп.к, может быть вычислена по формулам:

Эффективная тепловая мощность в этих случаях определяется по аналогичным формулам:
Таблица 2. Значения Qv для различных способов сварки

Способ сваркиСварочные материалыQv, Дж/мм3
Ручная электродуговаяЭлектроды:
УОНИ — 13/4565
ЭА 395/9, ЭА 606/10, ЭА 400/1042
ЭА 606/11, 48Н-146
ЭА 981/1548
Полуавтоматическая в CO2Проволока Св-08ГС38
Автоматическая и полуавтоматическая под флюсомПроволока Св-08А, флюс ОСЦ-4565
Проволока Св-10ГСМТ, флюс АН-4271

Формулы (4—7) дают наиболее точные результаты при δ/δк≤1,7. Они справедливы для низкоуглеродистых, низколегированных и аустенитных сталей, а также для титановых и алюминиевых сплавов толщиной примерно до 16 мм.

Сравнение по другим характеристикам

Об одной особенности работы батарей – инертности – уже упоминалось выше. Но чтобы сравнение радиаторов отопления выглядело объективным, кроме теплоотдачи следует учесть и другие важные параметры:

  • рабочее и максимальное давление теплоносителя;
  • количество вмещаемой воды;
  • масса.

Ограничение по рабочему давлению определяет, можно ли устанавливать отопительный прибор в многоэтажных зданиях, где высота подъема воды сетевыми насосами может достигать сотни метров. Параметр не играет роли для частных домов, где давление в системе невысокое, максимум 3 Бар.

Сравнение по вместительности радиаторов может дать представление об общем количестве воды в сети, которое придется нагревать. Ну а масса изделия важна при выборе места установки и способа крепления батареи.

В качестве примера ниже показана сравнительная таблица характеристик различных радиаторов отопления одинакового размера:

Рабочее давление, вес и вместительность разных батарей

Примечание. В таблице за 1 единицу принят отопительный прибор из 5 секций, кроме стального, представляющего собой единую панель.

Особенности подключения радиаторов

Фото 9

Подключение батарей в систему отопления имеет большое значение только при естественной циркуляции.

В этом случае принцип заключается в том, чтобы все радиаторы были полностью заполнены носителем тепла и не образовывали встречных токов. Но при использовании принудительной циркуляции этот фактор не имеет значения.

Как рассчитать сколько нужно секций?

Чтобы обогреть все помещения потребуется знать мощность, которая потребуется для каждого помещения, только после этого расчет теплоотдачи батареи. Расчет тепла, которое потребуется для обогрева помещения, необходим для того, чтобы узнать из скольких секций должен состоять радиатор.

Чтобы определить, сколько тепла потребуется для обогрева комнаты применяется довольно простая формула. Исходя от места расположения, количество берется то количество теплоты, которое потребуется на 1м3 помещения, для южной стороны это значение будет 35 Вт/ м3 и 35 Вт/м3 для северной. Таким образом, объем требуемого помещения на одну из величин и в итоге узнаем необходимую мощность.

Для расчета мощности биметаллических или алюминиевых батарей, нужно учитывать параметры указанные производителем в паспорте. Исходя из этих данных, для одной секции батареи при DT = 70. Это говорит о том чему равняется тепловой поток при температуре подачи 105 ºС, а в обратке – 70 ºС. Это учитывая что температура внутри помещения будет около 18ºС.

Исходя из данных нашей таблицы, у биметаллического радиатора, одна секция с межосевым размером 500 мм составляет 204 Вт, но с учетом того что температура теплоносителя в подаче будет 105ºС.

Расчет мощности. Нынешние системы, тем более индивидуальные настолько сильно не нагревают теплоноситель, а это означает, что тепловой поток будет меньше. Для получения реальных значений необходимо просчитать характеристику DT для конкретных условий по формуле:

DT = (tпод + tобр) / 2 – tкомн,

где: tпод – температура воды в подающем трубопроводе; tобр – то же, в обратке; tкомн – температура внутри комнаты.

После этого теплоотдачу, указанную в паспорте изделия, необходимо умножить на поправочный коэффициент, который принимается в соответствии от значений DT по таблице:

К примеру, температура теплоносителя составляет 80/60оС, температура в комнате будет равна 21оС характеристика DT будет равна (80 + 60) / 2 – 21 = 49, поправочный коэффициент при этом составит – 0.63. В этом случае тепловой поток от одной секции такого же биметаллического радиатора будет равняться 204*0.63 = 128.5 Вт. Руководствуясь этими данными, подбирается необходимое количество секций, которые будут хорошо прогревать комнату.

Рассчитать просто

Теперь, когда мы разобрались, какие показатели следует учесть в формуле, она уже не кажется такой сложной. Достаточно один раз произвести расчеты, чтобы понять, насколько она удобная.

Ведь действительно, при строительстве дома да и после этого, у хозяина остается подробный графический план каждого помещения с размерами, учитывающий стороны света. Предусмотреть влияние климатических особенностей региона тоже нетрудно. Единственное, что потребуется сделать, — уточнить кое-какие нюансы, прогулявшись с рулеткой по объекту.

Проанализируйте, какие помещения располагаются сверху и снизу, где окна и какая схема монтажа радиаторов использована. Тогда вы без проблем рассчитаете тепловую мощность, которая потребуется для поддержания комфортной температуры воздуха в помещении.

Вам будет проще работать с показателями, если вы сразу будете вносить их в тетрадь, нарисовав специальную таблицу. В нее же впоследствии можно вписать результаты расчётов. Произвести итоговые вычисления поможет встроенный калькулятор, с заложенными выше упомянутыми коэффициентами.

Если с получением каких-то из перечисленных выше показателей есть трудности, можно не брать их в расчет. Результат все равно будет учитывать максимально благоприятные условия.

У каких радиаторов теплоотдача лучше?

Как это видно из приведенной таблицы, где сравниваются теплоотдачи отопительных батарей, самая высокая мощность у биметаллических радиаторов отопления. Они представляют собой ребристый алюминиевый корпус, внутри которого находится прочный сварной каркас из металлических трубок, предназначенных для протока теплоносителя.

Данный вид отопительного оборудования отлично подойдет как для установки в частном доме с индивидуальной системой, так и для централизованной системы отопления. Главным минусом таких изделий является их высокая стоимость. Однако наилучшая теплоотдача биметаллических отопительных радиаторов, часто, позволяет сделать выбор в их сторону.

Дополнительные факторы, влияющие на теплоотдачу

На этот показатель также влияет:

  1. Тип подключения.
  2. Особенности размещения.

Радиатор можно подключить следующими способами:

Большинство производителей считают, что владелец будет проводить
диагональное подключение, ведь оно является наиболее эффективным. Оно заключается в подключении входной трубы к патрубку, размещенному вверху устройства отопления, и подключению выходной трубы к патрубку, находящемуся внизу противоположного конца. Благодаря этому теплоноситель сможет легко заполнить все секции и отдать тепло каждой частице радиатора отопления. При этом не нужно создавать очень большое давление для движения воды или другой нагретой жидкости.

Размещение батареи имеет очень большое значение. Если она будет установлена криво, то в некоторых секциях образуются воздушные карманы. Теплоотдача станет меньше.

Потеря теплоотдачи может быть и такой:

  • 7-10% — в случае превышения допустимого расстояния между устройством и подоконником. Оно должно составлять 10-15 см;
  • 5% — в случае уменьшения расстояния между стеной и батареей. Оптимальная величина — 3-5 см;
  • 7% — в ситуации несоблюдения расстояния между полом и радиатором. Оно должно составлять 10-15 см.
Рейтинг
( 1 оценка, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями: